
To believe or not to believe:

Validating explanation fidelity for dynamic malware analysis

Li Chen

li.chen@intel.com

Intel Labs

Carter Yagemann

yagemann@gatech.edu

Georgia Institute of Technology

Evan Downing

edowning3@gatech.edu

Georgia Institute of Technology

Abstract

Converting malware into images followed by vision-

based deep learning algorithms has shown superior threat

detection efficacy compared with classical machine learn-

ing algorithms. When malware are visualized as images,

visual-based interpretation schemes can also be applied to

extract insights of why individual samples are classified as

malicious. In this work, via two case studies of dynamic

malware classification, we extend the local interpretable

model-agnostic explanation algorithm to explain image-

based dynamic malware classification and examine its in-

terpretation fidelity. For both case studies, we first train

deep learning models via transfer learning on malware im-

ages, demonstrate high classification effectiveness, apply

an explanation method on the images, and correlate the re-

sults back to the samples to validate whether the algorith-

mic insights are consistent with security domain expertise.

In our first case study, the interpretation framework iden-

tifies indirect calls that uniquely characterize the underly-

ing exploit behavior of a malware family. In our second

case study, the interpretation framework extracts insightful

information such as cryptography-related APIs when ap-

plied on images created from API existence, but generate

ambiguous interpretation on images created from API se-

quences and frequencies. Our findings indicate that current

image-based interpretation techniques are promising for ex-

plaining vision-based malware classification. We continue

to develop image-based interpretation schemes specifically

for security applications.

1. Introduction

Malware is malicious software created for harming

users, computers, and networks. Viruses, trojan horses,

worms, spyware, and ransomware are examples of malware.

In malware detection, static analysis without executing the

application is a quick method to detect malicious patterns in

an application. To avoid static detection most malware con-

tain obfuscated code. Dynamic analysis, on the other hand,

executes the code and records the malware runtime behav-

ior. Even though dynamic analysis is slower than static

analysis, it offers better resiliency and efficacy against mal-

ware code obfuscation.

Machine learning has become increasingly popular and

important for malware detection because it can generalize

to detect new malware families. The manual effort of fea-

ture engineering can be costly, especially on unstructured

data formats. As the volume of data continues to grow at

increasing speed, scalable algorithms for malware detec-

tion are in high demand. Computer vision has provided a

unique perspective for performing malware classification.

First, it enables natural visualization on malware as a whole

entity. Second, deep learning has demonstrated state-of-

the-art performance for image classification. When mal-

ware is represented as images, transfer learning can lever-

age the superior performance from vision to classify mal-

ware with accelerated training speed and maintained clas-

sification efficacy. Last but not least, it has superior per-

formance compared with classical machine learning algo-

rithms [16, 15, 22, 7, 6].

For static malware analysis, a binary can be directly

mapped to pixel values between 0 and 255 [16, 15, 22, 7, 6].

By visually inspecting binaries plotted as grey-scale im-

ages, we can observe the textural and structural similarities

or dissimilarities on the static features of malware. By con-

trast, there are fewer vision-based dynamic malware classi-

fication techniques. [7] proposed a hierarchical ensemble

neural network scheme on dynamic telemetries collected

from Intel R© Processor Trace, where the control flow pack-

ets are converted into time series of images and demon-

strated the superior performance compared with other pop-

ular dynamic malware classifiers.

For security applications, besides classification efficacy,

model explanation is equally important for security re-

searchers and practitioners to deploy the model in the wild.

Sensible interpretation from the model on why a sample is

predicted as malicious or benign can generate valuable in-

sights to triage malware families, identify new malware sig-

432148



natures, understand the evolution of polymorphic malware,

and enhance the practitioner’s trust in the model. When

malware is represented as images, interpretation schemes

for natural images [17] can be extended to explain malware

classification.

Unlike natural images, where interpretation fidelity can

be assessed via human eyes, interpretation fidelity on mal-

ware images remains to be validated through security do-

main expertise. In this paper, via two case studies for

dynamic malware classification, we investigate the effec-

tiveness of local-interpretable model-agnostic explanation

(LIME) framework [17] specifically for image-based dy-

namic malware analysis. Our first case study examines dy-

namic malware images generated from predictions on se-

quences of instructions. The interpretation framework iden-

tifies indirect calls that uniquely characterize the underlying

exploit behavior of a malware family. In our second case

study, we consider three types of malware images generated

from API existence, API sequence, and API frequency fea-

tures. The interpretation framework provides insightful in-

formation such as crypto-related APIs when applied on im-

ages created from API existence, but generates ambiguous

information on images created from API sequences and fre-

quencies. Our findings indicate that current image-based in-

terpretation techniques are promising for vision-based mal-

ware classification. We plan to develop image-based inter-

pretation schemes specifically for malware images in secu-

rity applications.

Our contributions are summarized as follows:

• To the best of the authors’ knowledge, we are the

first to validate the interpretation fidelity of a model-

agnostic interpretation framework, using security do-

main expertise, on dynamic image-based malware

classification.

• We use deep transfer learning on dynamic malware im-

ages generated from instruction sequence predictions,

API existence, API sequence, and API frequency fea-

tures and demonstrate that dynamic malware image

analysis is highly effective.

• Our case studies present a valuable combination of ma-

chine learning and domain expertise to fully under-

stand the effectiveness of malware classification algo-

rithms.

• We advocate that interpretation is another important

dimension to evaluate malware classifiers. Vision-

based interpretability highlights the advantage of ap-

proaching the malware problem from a computer vi-

sion direction so that interpretation becomes concrete

as to indicate the actual locations of potential mali-

cious signals.

2. Background and Related Work

In the interpretation frameworks for image classification,

the explanation method provides interpretation by identi-

fying the most contributing pixel regions to the prediction

result [9, 10, 14, 17]. While there is an abundance of vi-

sion and natural language based interpretation frameworks,

few exist specifically for security applications. In [11],

the authors proposed non-linear approximation on the lo-

cal decision boundary to explain malware detection algo-

rithms for security applications. The method is primarily

for multi-layer perception (MLP) and recurrent neural net-

works (RNN) on non-image based data representations for

malware classification. [6] employed interpretation frame-

works such as the local-interpretable model-agnostic expla-

nation (LIME) [17] for natural images on static malware

images.

When we represent dynamic malware as images, natu-

ral image explanation schemes can be applied. In two case

studies here, we extend LIME to image-based dynamic mal-

ware classification and thoroughly examine the interpreta-

tion fidelity using security domain knowledge.

3. Case Studies

3.1. Case Study I

Our first case study is concerned with detecting anoma-

lies in dynamic program control-flow traces. The task is

to examine whether PDF files opened by Adobe Acrobat

Reader are malicious or not in a Windows R© system. The

source of our control-flow data is Intel R© Processor Trace

(Intel R© PT), which is a hardware feature present in modern

Intel R© processors [7]. Intel R© PT produces a large volume

of data within a short time period. For example, tracing

Acrobat Reader for one minute yields over 2 million in-

direct control-flow transfers including returns and indirect

calls and jumps. It becomes a daunting task for human an-

alysts to examine such a high volume of transfers for signs

of exploitation. Hence it is desired to employ the automated

interpretation framework to extract an explanation.

We collect 1,249 benign and 1,314 malicious traces from

the pdfka malware family, where each trace is collected

from the targeted program opening a PDF document. Each

trace is then disassembled, yielding a linear sequence of the

executed basic blocks. A basic block is defined as a se-

quence of linear instructions ending with a branch, which

can be a return, call, jump, conditional branch and so on.

Each basic block is assigned a universally unique integer

defined as BBID. A fixed length sliding window is moved

over the sequence of BBIDs, and a subsequent long short

term memory (LSTM) neural network is tasked with learn-

ing and predicting the next BBID for any sub-sequence end-

ing with an indirect control-flow transfer. The intuition be-

hind predicting only indirect transfers is that these are the

432249



Figure 1. Interpretation for a pdfka sample. White pixels are

correct predictions by the underlying model and black incorrect.

Green denotes strong support whereas red is strong contradiction.

The green regions shown highlight a suspicious control-flow loop.

only places where control-flow hijacking can occur during

a program execution. The LSTM model is trained using

only normal traces of the target program and then its per-

formance is monitored over unlabeled traces. If an anomaly

occurs in the trace, this will cause the model’s performance

to drop below a defined threshold and the trace will be la-

beled anomalous.

The dynamic malware images are generated from the

prediction of the LSTM model on the BBIDs, where

the white pixels are correct predictions and black pixels

are incorrect predictions. On these malware images, we

apply deep transfer learning using the pre-trained VGG

model [20] on ImageNet, freeze the top layers and add an

additional two fully connected layers, each with dropout, to

retrain on the dynamic malware images. The training and

test split is 0.8 : 0.2. We set the number of epochs to be 50

with early stopping criterion if the validation loss does not

decrease after 10 epochs. We use the model checkpointed

at the 32-th epoch. The classification accuracy on the test

set is 100%. This result demonstrates the effectiveness of

vision-based deep transfer learning approach for dynamic

malware detection and thus it makes sense to examine what

interpretation can be generated using the decision bound-

aries from this model.

Next we apply the interpretation framework on the gen-

erated images to examine the fidelity of explanation. Fig-

ure 1 shows the interpretation of one of the pdfka fam-

ily traces. Our model marks several spots within a large

streak of incorrect predictions as strongly supporting that

this trace belongs to the pdfka set. From here we can re-

verse these chunks of BBIDs to get back to the executed

instructions. Upon manual inspection, we discover that at

this point in the trace, the program makes one particular

indirect call several hundred times in a row. By looking

at the relative virtual address, we determine that this activ-

ity is happening inside the part of AcroRd32.dll that parses

TIFF images. The most well-known vulnerability in this

part of the program is CVE-2010-0188, which matches sev-

eral online reports about this family’s behavior [4]. We also

manually confirm that this pattern does in fact appear in all

the pdfka traces and none of the benign traces. To further

verify, we also create and trace several benign documents

containing benign TIFF images and confirm none of them

produce the anomalous pattern. Although Acrobat Reader

is closed source, making indisputable verification difficult,

we believe our manual analysis strongly supports that our

interpretation model successfully identified the subsection

of the pdfka traces that uniquely characterizes the underly-

ing exploit this family relies on. This case study demon-

strates the usefulness of the interpretation method on dy-

namic malware images.

3.2. Case Study II

In our second case study, we evaluate three models de-

signed to classify WindowsR Portable Executable (PE) files

as either malicious or benign. All three models use dynamic

features produced by malware and benign software during

execution.

Our malware dataset is comprised of 13,394 WindowsR

PE samples. These samples were collected from the Geor-

gia Tech Research Institute (GTRI) using their internal mal-

ware collection and analysis platform APIARY [1]. Using

AVClass [19], our malware dataset is made up of 247 fami-

lies (demonstrating the diversity of our samples).

Our benign dataset is made up of 5,772 samples and was

collected by crawling CNET [2]. Specifically, our samples

are a mix of WindowsR PE and WindowsR Installer (MSI)

files under 22 different categories (according to CNET)

ranging from Audio to Education to Business-related soft-

ware.

We ran all of our samples for 2 minutes using a mod-

ified version of Cuckoo [3] version 1.2 in Windows 7 32-

bit KVM virtual machines with network and random-access

memory (RAM) hardware extensions. We used KVM and

hardware extensions to introduce as few artifacts indicative

of a malware analysis environment as possible. Malware

authors have been known to check for system and network-

related artifacts (e.g., registry key values and network tim-

ing) which they can use to evade analysis (e.g., by perform-

ing innocuous activities or terminating early) [13, 12, 8, 18].

To improve the quality of our malware dataset, we only in-

clude samples which ran for the full 2 minutes without ter-

minating early. We also executed the malware samples with

3 days of them being collected by the organization to im-

prove the chances that the malware would perform mali-

cious activities. Finally, to improve the quality of our be-

nign dataset, we only include samples which did not have

more than 2 antivirus companies label them as malicious via

VirusTotal [5]. We also use Cuckoo to automatically inter-

act with the benign software (via fake mouse-clicks on its

GUI) to cause it to reveal a variety of behaviors (namely the

installation process).

432350



Figure 2. Interpretation for a dynamic malicious image created

from API existence. The large light green areas in the top left

image denote support regions for the malicious class. The sup-

ported regions that contribute to malicious prediction focused on

cryptography-related API calls and HTTP-related calls.

On each set of the dynamic malware images generated

from API existence, sequence, and frequency, we again ap-

ply transfer learning via VGG network pre-trained on Ima-

geNet, where we freeze the top layers and add customized

two additional fully connected layers and a softmax layer

to produce the classification result. The training and valida-

tion split is 0.8:0.2. We set the number of epochs to be 50

with early stopping criterion if the validation loss does not

decrease after 10 epochs. The classification results on three

models are the same within statistically significance with an

accuracy at 95%. Then we apply the interpretation scheme

on each of the three datasets and the decision boundaries

generated by the corresponding classifiers.

The interpretation framework on API call frequencies

and existence generate similar insights, where we find

that one of our malicious sample interpretations focused

on cryptography-related API calls and HTTP-related calls,

both of which are common ways for malware to commu-

nicate with their command-and-control (C&C servers). We

note that these extracted insights are not exclusive to mal-

ware, since legitimate Internet browser applications per-

form similar activities. In fact, this lends insight into the

shortcomings of our benign dataset and what types of be-

nign software we may be missing to improve the reliability

of our classifier.

The API sequence call has been shown to be a weak fea-

ture in past work [21]. Using the interpretation framework,

we examine whether the API sequence is a weak feature

without relying on domain expertise. Although training this

model resulted in a validation accuracy of 94%, our inter-

pretation results are not intuitive. While the model was con-

fident in classifying one the benign samples (Fig 3), the in-

terpretation on its boundary approximations is ambiguous at

interpreting why this was the case. There are large sections

highlighted as contributing to the classification of the sam-

ple. The most heavily weighted areas make frequent calls

to FindNextFileW and GetProcAddress (among others), but

this isn’t indicative of benign or malicious behavior. When

looking at malicious samples, the results are even more am-

biguous. It seems the model memorized at least one of the

samples entirely as seen in Fig 4.

Figure 3. Interpretation for a benign sample. Each color repre-

sents a unique Windows API call during execution. The large light

green areas in the top image denote support for the benign class.

The dark red areas in the bottom image contradict the support for

the benign class.

Figure 4. Interpretation on a malicious image generated from API

sequences, where each pixel represents a unique Windows API

call during execution. Even though the vision-based classification

scheme correctly predicts this sample as malicious with high confi-

dence, the interpretation method that approximates the boundaries

provides ambiguous explanation.

4. Conclusion

In this paper, we demonstrate the effectiveness of us-

ing computer-vision based techniques for dynamic mal-

ware classification and employing vision-based interpreta-

tion frameworks to explain why the deep learning mod-

els make such predictions. Our discoveries on the two

case studies indicate the promising advantages of applying

vision-based interpretation frameworks to explain image-

based dynamic malware classifiers. Security practition-

ers, based on the algorithmic interpretation findings, can

check the code and verify whether the ML-identified loca-

tions contain a signatures unique to certain malware fami-

lies. We plan to continue studying and proposing interpre-

tation schemes specifically for image-based malware clas-

sification frameworks.

432451



References

[1] Apiary. http://apiary.gtri.gatech.edu/. Ac-

cessed: 2019-03-28.

[2] Cnet. https://www.cnet.com/. Accessed: 2019-03-

29.

[3] Cuckoo. https://cuckoosandbox.org/. Accessed:

2019-03-29.

[4] Exploit:win32/pdfjsc.aew. https://www.

microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=

Exploit:Win32/Pdfjsc.AEW. Accessed: 2019-03-

27.

[5] Virustotal. https://www.virustotal.com/. Ac-

cessed: 2019-03-29.

[6] L. Chen. Deep transfer learning for static malware classifi-

cation. arXiv preprint arXiv:1812.07606, 2018.

[7] L. Chen, S. Sultana, and R. Sahita. Henet: A deep learn-

ing approach on intel R© processor trace for effective exploit

detection. IEEE Symposium on Security and Privacy Work-

shop. arXiv preprint arXiv:1801.02318, 2018.

[8] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: mal-

ware analysis via hardware virtualization extensions. In Pro-

ceedings of the 15th ACM conference on Computer and com-

munications security, pages 51–62. ACM, 2008.

[9] R. C. Fong and A. Vedaldi. Interpretable explanations of

black boxes by meaningful perturbation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3429–3437, 2017.

[10] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,

S. Chaudhuri, and M. Vechev. Ai2: Safety and robustness

certification of neural networks with abstract interpretation.

In 2018 IEEE Symposium on Security and Privacy (SP),

pages 3–18. IEEE, 2018.

[11] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna:

Explaining deep learning based security applications. In Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 364–379. ACM, 2018.

[12] D. Kirat, G. Vigna, and C. Kruegel. Barecloud: bare-

metal analysis-based evasive malware detection. In Proceed-

ings of the 23rd USENIX conference on Security Symposium

(SEC’14). USENIX Association, Berkeley, CA, USA, pages

287–301, 2014.

[13] C. Kolbitsch, E. Kirda, and C. Kruegel. The power of pro-

crastination: detection and mitigation of execution-stalling

malicious code. In Proceedings of the 18th ACM conference

on Computer and communications security, pages 285–296.

ACM, 2011.

[14] S. M. Lundberg and S.-I. Lee. A unified approach to inter-

preting model predictions. In Advances in Neural Informa-

tion Processing Systems, pages 4765–4774, 2017.

[15] A. Makandar and A. Patrot. Malware image analysis and

classification using support vector machine. International

Journal of Trends in Computer Science and Engineering,

4(5):01–03, 2015.

[16] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath.

Malware images: visualization and automatic classification.

In Proceedings of the 8th international symposium on visu-

alization for cyber security, page 4. ACM, 2011.

[17] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust

you?: Explaining the predictions of any classifier. In Pro-

ceedings of the 22nd ACM SIGKDD international confer-

ence on knowledge discovery and data mining, pages 1135–

1144. ACM, 2016.

[18] P. Royal. Entrapment: Tricking Malware with Transparent,

Scalable Malware Analysis. Talk at Blackhat, 2012.

[19] M. Sebastin, R. Rivera, P. Kotzias, and J. Caballero. AV-

class: A Tool for Massive Malware Labeling. In Interna-

tional Symposium on Research in Attacks, Intrusions, and

Defenses, pages 230–253. Springer, 2016.

[20] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[21] D. Wagner and P. Soto. Mimicry attacks on host-based intru-

sion detection systems. In Proceedings of the 9th ACM Con-

ference on Computer and Communications Security, pages

255–264. ACM, 2002.

[22] S. Yue. Imbalanced malware images classification: a cnn

based approach. arXiv preprint arXiv:1708.08042, 2017.

432552


